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The solvability of the nonlinear problem for an elastic shallow shell was investigated in 

p] ( *). The equations of nonshallow shells have certain special features and therefore 

require mathematical justification. The solvability of the general problem of a closed 

circular cylindrical shellin nonlinear formulation is the subject of @J. In the present 
paper the procedure of @] is extended to the case of an arbitrarily fastened anisotropic 
laminar shell of arbitrary configuration acted on by a general load and temperature field. 
The method consists in extending the coercivity inequality obtained for a regular piece 
of the shell to a piecewise-regular shell. The possibility of this extension implies the 
applicability of the Leray-Schauder principle, the existence of a generalized solution, 
the applicability of projective methods, etc. The conclusions remain valid even if a 

different (linear, nonlinear) calculation theory is applied over each piece of the shell. 

The author is grateful to I, I. Vorovich for supervising the present study. 

1. Notation, Basic relatfon8. Let the coordinate surface Q of the shell be 
defined by the equation (we use the notation of [3]) and let the follow- 
ing conditions be fulfilled : 

1) the above equation defines a one-to-one mapping of the surface (I onto some 

bounded domain G in the plane a,, us with the boundary r; 

2) a,, 0~~ is an orthogonal curvilinear coordinate system and 0 < ml < At < ?& 
(i = 1, 2); 

3) G consists of a finite number of starlike domains [4]; r consists of a finite 
number of closed contours ; 

4) U 6ZZ wg’ 0, > I), i.e. the function r (a,, as) has in G all generalized 
derivatives of up to third order, inclusively, summable in some power p; 

5) r c JI, (m, U) , i.e. to a Liapunov class (**). 
Medium deflection is characterized by the fact that the elongations, shear strains, and 

squares of the angles of rotation are negligible compared with unity [3, 51. Under these 
a~umptions the general formulas of [3] yield the following deformations relations : 

2at, -1 et, -f- eti + eta++, e,, = A,;‘uk,r + (- l)‘+h ~~~A*}-~Aj,,~, + h,,w 

eia = A,’ w,~ - k,,u, - kt,u, 

xik = - A -: ek3,i - (- ~)i+k(44+)-1Ai,ses0 + ki,ek, + (W 

l ) See also I. I. Vorovich’s doctoral thesis. 
l ‘) Editorial Note. Cyrillic symbol J&r is obviously derived from Liapunov ( &nyXOB ). 
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As we know, the theory of shells does not provide us with a general definition of bend- 

ing strain components in the general case.This means that other expressions for Xi& are 
possible within the error bracket admissible in shell theory. Thus, the author of [5] takes 

Zxrs = i I-- -C’e,a,f + (~t-$)-1-%.2ei3 + k,,esi + Griaells + Ici,e?sI (1.2) 
i-1 

instead of (1.1). 

Some remarks should be made concerning notation. As a rule, we will denote a six- 
or three-component vector and its components by the same letter. A three-component 

vector will be defined by its projections on the unit vectors e,, e2, m or, if it is accom- 

panied by the degree symbol, by its projections on the orthogonal unit vectors n,, n2, n2, 

where n3 = m, n, is the exterior normal to r,and n2is the vector tangent to r. The 
domain of integration will be indicated in the differential appearing in the integrand. 

We shall also use the following abbreviations: 

rl = kk3, kc - ‘la), t = (e13. e2,, (9, 0 - (Ul, u$, w) 

(a, b, . . . , h) = i a,bi . . hi 
i=l 

r++\ rk- = r&, dy$- = (d&i- t dr;,‘ir dr;;,_) 
P" = (T”, r, Iv”), PI0 = (TlO, SlO, iv,“) 

z = (X9 y, Z), Zl = (0, 0, Zl) 

and componentwise vector multiplication, 

c = ab, c, = a,b, (i = I,. . . (1; 2 = 3, 6) 

It will be convenient for us to deviate from the symbols used to denote strains and 
forces in [3], 

e1 = e11, e2 = 2e12, es = e22, eq = xll, eb = x12, e6 = %22 

S, = Tll, S2 = T12, S, = 7’22, S, = Mu, S, = 2M12, &I = J422 

The general elasticity relations for anisotropic laminar shells with allowance for ther- 

mal expansion are 
S = Be - t, t = (bl”’ + bf’) T, + (l$’ + b;“‘) T, (1.3) 

Here B is the positive-definite rigidity matrix whose coefficients are expressible in 
terms of the layer characteristics by means of formulas (8.3)-(8.5) of [S]; b(‘) (i = 
= 1, 3, 4, 6) is the r’th column of the matrix B(*) whose coefficients can be deter- 
mined from the same formulas as in the case of the matrix B by replacing Bjk* in for- 

mulas (8.3)-(8.5) of [6] by h,Bj,S (h, is the coefficient of thermal expansion of the 
s th layer) ; T, is the temperature of the coordinate surface ; T, is the temperature gra- 

dient. 
It is convenient to set 

2 

ei - ei + 04 = ei + 22 *ijrij (i=1,...,6) (1.4) 
Pl 
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where et, 9i/, Zij are the corresponding linear operators acting on O. Formulas of this 

type are suitable for describing extremely diverse variants of deformation relations. 
The following force facts are given: 

Here Z1, PI0 is the follower loading, k and p are the coefficients of elasticity of 

the supports. 

The geometric boundary-conditions are of the form 

(0, ni> IYi- =: /r (i = 1(2,3) (5, nd I.(,- := fc U.5) 
The shell may be part of a structure, so that in addition to the geometric and static 

boundary conditions we must also consider the matching conditions. The ith geometric 

and the ith static matching conditions are specified on the set ‘J’i (i = 1, 2, 3, 4). The 

plane measure of the sets vi, vi . $ (i = 1, 2, 3, 4) is equal to zero. Without limit- 

ing generality we can assume that 

Yi u ri- u 7,’ = r (i = 1,2,3. 4) 

The equations of equilibrium of the shell in terms of forces and moments appear in 
various papers and monographs [3] and need not be written out here, especially since they 
are derivable from the the virtual work principle formulated in Sect.4. 

2. Ancillary rr8umptionc. In addition to the usual spaces C (G), L, (G), 
p >/ 1 , we shall also use [7] the Sobolev-Slobodetskii spaces W::j (G) and W:r-l’p) (G) 

(r is an integer), and V = WY) (C) x WV) (G) X PVf) (G). Moreover, we set 

IIfIlccc,=Iflt IIUl&, Q = s If IPdQ; II f II 
Norms in the spaces 11’ and V are defined in a natural way. 

w;+c) = 11 f I& P 

Lemma 2.1. Let the functions occurring in Eqs.(l. 5) satisfy the condition 

1% E PVp-“p) (7231 11 = la = 14 = i, la = 2 (i = 1, . . . . 4) 

In this case there exists a vector function o- E V which satisfies (1.5) and vanishes 

near rr (the i th geometric matching condition). 
The proof follows from continuation theorems c] in self-evident fashion. 

Let E be the closure of all vector functions a, smooth in 5 which satisfy homogeneous 

geometric boundary conditions (1.5), i.e. let it be the closure in norm of the space V. 

Let us introduce the bilinear form 

A (,‘I), a@)) = 
s 

(<Be(‘), ec2)) + b (g(l), g@))) dG, (b> 0, dG, = LAadadae) (2.1) 
It is clear that if A (a, w) = 0, then e = 0 and i = 0. This means that o) is the dis- 

placement of the shell as a rigid whole. 

Let fif c E be a subspace, M = (o : A (a, o) = 0). Let us introduce the factor space 
ES = E I M. By definition, 

UoUs* = infII~‘Ue (o’ E E, o E E*, to’ E a) 

There exists a unique “normal” representative o + of the class of 0 such that 

110IIfi;.=U~*U~.‘~*E@ 

The space E is Hilbertian, which means that E* is also Hilbertian. 
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Le mm a 2. 2 , (see PI). There exists a constant m such that 

I& 4 II 0 1jK. VUE Ef (m> 0) 
(2.2) 

Here 7 is a piecewise-smooth contour from G , and 1 <p < CO. Moreover, the relation 

expressed by inequality (2.2) is completely continuous, i.e. the boundedness of the set 
{(u) in E* implies compactness in the sense of the left sides of (2.2). 

Le m m a 2. 3 (in terms of [8]). For the elliptic problem 

L (z, a/ 82) 24 (Z) = f (z) (ZE Q), B (I, a / az) 1‘ (2) Is = @ k’) 
we have the prior inequality 

(2.3) 

Priorestimate (2.3)forthecasel-~~>,O,l-~~>O~i= I,...,~;~= i,.., r) 

appears in [8]; inequality (2.3) was obtained on the basis of the relevant results of [8] 
Bilinear form (2. 1) defines the scalar product and the norm in E* , 

((P(l), dQ = A(&), a@)), ll@UjJ = s (Me, e) + b (g, g)) dC, 

Lemma 2.4. There exist constants m, m, such that 

mUonE* <llolh Gmlll~llE* 0% ml > 0) (2.4) 

uniformly for all Q) E E+ . 
The existence of m, is proved in [iz]. It remains for us to show that 

m=inf,(II~llrrlloll~~)>O, oEE* 

Let m = 0. In this case there exists a sequence {o(“)) such that 

Ij oqp = 1, II a@) IIH 4 0, “W -, “(0) weakly in E* 

Since w(O) cannot be equal to zero c2], the existence of such a sequence together with 
(1.1) and Lemma (2.2) imply that 

II a@) II0 2 c -+ 0, t?.=f? 9 1 i (i= 1 t .**, f-9 (2.5) 

1 UJ’(“) I, II a(“) II,,, p, b -+ 0, a = VI*, us*, w I + 
J ’ W,z ’ b=G,r (2.6) 

II $” II,,, a, G - 0 (i_= 1, 2) (2.7) 

Here gl, gz correspond .3 the elliptic problem 
+ * ad 
u , J - us&= ‘:I, A& 2 + A+* = g, - 

2,l ’ an1 r= I 
0 

Expression (2.7) and Lemma (2.3) imply Item (a) ; Item (a), (2.5), (2. 6), and (1.1) 
imply Item (b) and Item (c) of the following statement: 

a) II IL;(“)& - 0 08 (i = 1, 2), b) 1 w’@‘) II2 2 -+ 0, c) 1 co(“) jjE. --, 0 

Item (c) contradicts the condition 11 &)jjE. = 1. 
We denote the space E* with the norm II * llIi by H. 

Lemma 2.5. Lemma 2.2 remains valid if’ E* is replaced by H throcghout its 

formulation. 
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Let US introduce the sets 71” C rl+ and C,’ c G on which pi < 0’ and ki < 0, respec- 
tively, hold almost everywhere (i = i, 2, 3). By Lemma 2.4 there exist constants cf* 
ii = 1, . . . . 6) such that 

II “j** A It Q, ,q < Cj *II~ I& (i= 1, 2) (Ill, 41&,,c = If IPdcA) 
’ ’ I s 

me G” l-44 l 1 W* 1’ < d 11 CO II&, 11~0, nil It, ~, Yj. < Cj+jII o I& 

I w* 12 d ccl* II 0 II&, 91=2q/(q--2) cr>l 

The discussion to follow rests on the following assumptions : 
1) the linear operators $ij, ‘ii (1.4) are completely continuous in H; 

2) 8 = 0 if and only if [ = 0; 

3) if { z 0,then ~,j =‘t(j - 0 (i = 1,. . . , 6; i = 1, 2); 

4) BELL, (G,, AT,, XT,d&G), X, Y, ZI, kl, It, z&(G) 

(P”, n,), (PI’, n,), Pi E Lp (Tt+) (i = I,% M", PI E 4 (T4') 

ks, ZEC*(G), WEC*(T,+), &AT,+:;), L,(T;;;) 

No, F&EC* b+) (q>l) 

5) there exist constants Ci >. c,* (i = 1, . . , 6) such that 

(2.8) 

6) the conditions of Lemma 2.1 are fulfilled. 

References to these assumptions will be made in the form “(5) (2.8)“. Assumptions 
(1) (2. 8) - (3) (2.8) are fulfilled for most deformation relations. It is usually possible to 

prove Lemma 2.4 by means of Lemma 2.3. 

If the shell is considered as part of a structure, then its contribution to the equation of 
the virtual work principle is expressed by the functional 

Aa (o- + o, cu-) = (0, o-)~ + 91” (0, o-) + Qp (0, 04) 

(2.9) 



376 G. A. Kosushkin 

Here o a is the virtual displacement under conditions (1.5). We assume that the right 
sides of formulas (2.9) for A, Qr, 0% can be evaluated from the normal representatives 
[‘2] ; the asterisks have been omitted. 

Lemma 2.6. Let assumptions (2.8) be fulfilled. In this case the following repre- 
sentation is valid for all .o, oA E H 

a) Ql(rn,~~)=-(Km,~*)~ 

h) Qz(w,m-)=-(K2q~-)~ 

4 A@- + o,oA)= (w -KKo,OA)Jp K-K&K, 

Here K1. Kz, K are completely continuous operators in H. 

Similar statements are proved by the functional method in [2], so we need only con- 
sider the distinctive features of the proof in the present case. 

Let us consider the equation 

P(a) = 
s 

([Be, (e + cpl- + 0)) + (Be, (rp*- + 6)) + ‘/a 0 (P- + 

+ 6) @I- + 6)) - t (e -t ot- + 6) - ilab <g, VI dG, 

It is not difficult to prove the weak continuity of P (eo) in H and the fact that 

Q1 (0, a*) is the Giteaux differential of P (co). The subsequent statements of Item (a) 
can be proved as in @]. Item (b) can also be proved by the method of r2]. 

3, Proof of the baafc lnequrlity, Let us introduce the additional sumbols 

Ijn II2 = i 11 ai llA2, 11 g [\A = II gs A Ijo, 2, c, a+ = Rat a+ = &-’ 
i=l 

@(o)=A (or+o, to), @+ (R. co+) = R-2 CD (w) =A+@+o+, a+) <IIm ll~=R) 

Lemma 3.1. let conditions (2. 8) be fulfilled. In this case there exist constants 

Pf P such that D(o) > Pus c‘ll4l~=R>~ (w>O) (4.i) 
This can be proved by the method developed in p]. The statements 

Q+(fi,O)>,P v II 0 IIH = i 
are equivalent to (4.1). 

(4.2) 

It is clearly sufficient to prove that 

lim a+ (R, 0) > 0 as R~oo v II @ lla = 1 (4.3) 
uniformly in 0 . 

This implies the existence of the constant p and the validity of (4.2) for sufficiently 
large R . Oti-,erwise there would exist a sequence (R,, ,cn)) such that 

ur+(R,,O(“+cfO, R”-,oo as n,m-+cw ( II 0 H= 1) (4.4) 

This contradicts (4.3). which implies the sufficiency of (4.3). 
Let us suppose that (4.3) does not hold. This means that (4.4) is valid. The functional 

@+ (R, (o) is a fourth-degree polynomial in o with the leading term 

CQ+ (R, o) = 2 5 (NJ+, 6+> dG, 

and if the sequence {]I 6&, II) is not bounded, then 0” (R,, @)) --, + o and (4.4) does 

not hold. This implies that the sequence {IO’ ,,,,li} is bounded, since we assumed that 
(4.4) holds; hence, /@,,I --, 0 as nd 00, since Rm -+ w, 

Thus, the sequence 
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lim 11 Oi,, I( as m, n 4 M 

has a limit; the limit over n for every fixed m also exists and is equal to 

the repeated limit theorem, we obtain 

lim 1 O;,, II = lim, lim, u8:,, 11, n,m+w 

By virtue of this fact there exists an no (e) such that 

zero. Recalling 

a,+ (R,, a(“)) = 11 m(“)$ + 
s 

(k, aCn), CO@)> dC, f 
c 

<PO” (n), 0’ (“)dy’) + fnm 
* 

( 1 Inm I (e, 4 m) 4 

Appealing to (5) (2.8). we obtain 

CD+ (I?,, 0P) > I/? [ 0) & - e, n,mah (ljdn)IIH= 1) 

This inequality clearly contradicts hypothesis (4.4), which implies the validity of the 

lemma. 

4. Solvability of the problem on the equilibrium modes of an 
arbftrary anitotropic lamfnar shell. A shell satisfying the conditions of 
Sects. 1 and 2 will be called “regular”. We call a shell “piecewise-regular” if it can 

be decomposed into a finite number of regular parts. Let u be the coordinate surface 
of the shell and let ~$k) (k = 1, . . . . N) be its regular part. Let us also decompose 

the load action on the shell u and the boundary conditions into parts corresponding to 
o(k), 

We can carry out the construction as follows, We supply all the quantities occurring 

in Sects. 1 - 3 with an additional index k. This will mean that the quantity so marked 
corresponds to the kth piece. The statements of Sects. 1 - 3 hold for the quantities 
accompanied by the index k. 

0 = ,i, a(k)9 

r = (.‘; r(k9\(b 

This means that 

G = u” GW, 
k=l 

GO0 = {a?, a,ll)} 

u” fi flk’) i ’ 
r*=o (i=1,... ,4) _. _ 

bet the expression 

mean that 
o - w(k) on G(k) (k = 1, . . . , N) 

and that the geometric matching conditions in terms of the quantities CO(~) and CL@) 

( n, m = 1, . . . . N) are fulfilled on #’ fl ~1”’ (i = 1, . . ., 4) . Let us introduce 
the direct product of spaces 

H = 5 x’H(k) (M(k) = M, k = 2,. . . , N) 
k=l 

where Htk) is the space defined in Sect. 2. 
The equilibrium condition for the shell can be expressed with the aid of the virtual 

work principle by means of the equation N 

A (co- + or, CO * ) :-- 2 Alk) (CO (k) ;‘- o>(k), o * (k)) = 0 (5.1) 
k:l 
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rtefinition 4. I, The “generalized sofution” of the problem for a piecewise- 
regular shell is a function @* + w (o E H) which satisfies Eq, (5.1) for all 0” c H. 

Lemma 4.1. Equation (5,l) is equivalent to the following operator equation in Hi 

h(cu-$o,w”)=(u-Ko,o”)=O or o-K(@=f) 

where the completely continuous operator N 

K =s 2 i_ Ii’00 
k=t 

is the direct sum of the operators K@l acting in NW), The proof follows from Lemma 2.6. 

Lemma 4.2. For a piecewise-regular shell there exist positive constants Rs, l& 
such that 

@(CO) = 2 ~~)(~{~~~~ &k&s, Vll@il#t=.CM, 
k=l 

(5.23 

By virtue of Lemma 3.1 there exist a pi, and a p such that 

n+(“i) (cu’k)) > @a v II @P) II H(k)=R& P (k =L: 1,. . . , Nj 

It is clear that 
N 

(5.3) 

R-0 (a) & infk l.&k - e = p, (P/R)’ ‘N j&W+ 2 @k--i)]I<% 
I1 

R>& 

k==X Rk<P 

The statement has been proved, 

The following statements follow from inequality (5.2) exactly as in @I. 
Lemma 4.3, The rotation of the completely continuous field o - k’crr on a 

sphere S (II, 0) of sufficiently large radius R is equal to tl. 

Theorem 4.1. If the shell is piecewise-regular, then there exists a generalized 

solution of the problem in the sense of Definition 4, I and &&I (I?,. 
The above results enable us to inves~gate the differential properties of the solution. 

By virtue of the theorems of [33, Lemma 4.3 guarantees the convergence of the Galer- 

kin method and other projective methods. 
The existence theorem of @] for a closed cylindrical shell is readily obtainable from 

Theorem 4.1. In this case it is sufficient to cut the shell into two regular pieces by a 
diametric plane and to formulate the matching conditions at the cuts. 

Theorem 4.1 remains valid if a different (linear, nonlinear) calculation theory is 
applied over each piece. 
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EQUATIONS OF PERTURBED MOTION OF A BODY 

WITH A THIN-WALLED ELASTIC SHELL 

PARTIALLY FILLED WITH A LIQUID 

PMM Vol. 34, W3, 1970, pp.401-411 

E, I. GRIGOLIUK and F. N. SHKLIARCHUK 

(Receiveb%$%er 2, 1969) 

Linear equations of perturbed motion of a thin-walled elastic shell partially filled with 

a heavy compressible fluid considered in the acoustic appro~mation are derived ; the 

principal [force] vector and the principal moment of the reactions exerted by the shell 
on the “carrying body” are determined. Perturbed motion with small vibrations is char- 
acterized by the displacement of a certain point attached to the rigfd shell fastening 

contour, by rotation relative to this point, and by elastic displacements expressed as an 

expansion in the proper vibration modes of the fastened fluid-containing shell. The 
natural frequencies and vibration modes of a fluid-containing shell are determined by 
means of a variational principle. 

Allowance for the compressibility of the fluid makes it possible to consider vibrations 
in the acoustic frequency spectrum. Moreover, calculations show that it may be neces- 
sary to make allowance for it in calculating the lower frequencies of the elastic vibra- 
tions of the shell, e. g, of the ax~mme~ic vibrations of relatively thick shells of revo- 
lution. Allowance for gravity is necessary in considering vibrations in the frequency 
spectrum of gravitational surface waves and vibrations of flexible fluid-containing shells. 


